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The main thrust of this work is to treat the initial convective phase of a fluid 
heated from below as a statistical initial value problem. The advantage of the 
approach is that it allows a continuous bandwidth of modes to be represented in 
the initial spectrum. We show that if the initial disturbance field is small and 
has a sufficiently smooth spectrum, then a natural statistical selection process 
chooses from the initial disorder a perfectly ordered field of single rolls. The scale 
of this roll is the scale corresponding to the most critical wave-number obtained 
from the linear stability problem. We relate this solution to the optimal solution 
which would be obtained by the upper bound procedures of Howard, Malkus 
and Busse. Moreover, we show in addition, that if the initial disturbance field is 
weighted in favour of a particular single roll whose scale is close to critical, the 
final solution reflects the initial condition providing a certain stability criterion 
is met. In  the two-dimensional case we analyze, this turns out t o  be the Eckhaus 
stability condition previously obtained by a discrete multimodal analysis. 

1. Introduction 
One of the intriguing features of mathematical physics is the evolution of 

order from initial disorder. A classical example is the success of macroscopic 
gas dynamics based upon the premise that the microscopic molecular disorder 
relaxes very quickly to statistical order, a state of thermodynamic equilibrium. 
A further example of this phenomenon is the way in which a field of weakly 
coupled dispersive random waves, initially non-Gaussian, can relax to a state 
close enough to Gaussianity so as to permit a finite closure on the hierarchy of 
moment equations (Benney & Newell 1969). 

I n  this work we discuss a related phenomenon, namely the evolution of macro- 
scopic order out of initial macroscopic disorder. The problem we address is that 
of thermal convection in a horizontally infinite layer heated from below. It is 
known that when the temperature difference (in dimensionless units, the 
Rayleigh number Ra) exceeds a certain critical value, the purely conductive 
solution is unstable and convective motion of cellular structure and with a par- 
ticular cell size sets in. Malkus & Veronis (1958) discussed the finite amplitude 
nature of the steady convective motions whose cell size corresponded to the 
most critical wave-number. However, it is clear from the stability diagram 
(obtained from a linear stability analysis of the purely conductive solution, 
see figure 1) that a continuous finite bandwidth of modes is possible. 
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Ifwe define L to be the difference between k the wave-number ofthe motion and 
kc the wave-number of the most critical mode, then in the case when both 
boundaries have free surface boundary conditions (and so Ra, = ?r4, k, = n l J 2 ; )  
the continuous range of unimodal solutions correspond to the band, 

3n2 Ra - Ra, 
8 Ra, * 

L2 < - 

Schluter, Lortz & Busse (1965) examined the stability of such solutions (corre- 
sponding to wave vector (k, + L, 0) ) .  They concluded that by virtue of three- 

I I 

I 
I I 

kc 

k-wave-number 

FIGURE 1. Rayleigh number vs. wave-number diagram separating regions 
of stability, instability of linear conductive profile. 

dimensional (0, k,) and oblique ( I E ,  - L, (42nL)S) mode instabilities the band 
of solutions, which are stable to infinitesimal perturbations about their finite 
amplitude steady states, is restricted to the range, 

where y2 < 1/43. If one were only to allow two-dimensional disturbances 
(kc +H,  O ) ,  then the range of stable solutions would be given by Eckhaus (1965): 

(1.3) 

Therefore, it would seem that the stability criterion is not; enough to determine 
the state of motion; it is sufficient to determine that the motion consists of a 
single roll (see Schliiter, Lortz & Busse 1965) but insufficient to establish further 
selection among the given range. Yet in experiments, if one allows the solution 
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to  grow from the infinitesimal perturbations natural to the fluid, the state reached 
is a steady cell-like structure with a scale corresponding to the most critical mode. 

Newell & Whitehead (1969) suggested that i t  would be difficult for a sideband 
mode solution to remain stable while still in a state of growth. Consider the 
following conceptual experiment: we begin the motion with a single sideband 
mode which if left alone will grow to a steady state; however, if at  some stage in 
its evolution we switch on all the allowable perturbations in the fluid, then the 
range of stability of the sideband mode (the range of L)  decreases to zero as the 
mode L solution is perturbed in earlier stages of its evolution. This is verified by 
experiment (Chen & Whitehead 1968), who found that in order to attain a solution 
corresponding to a sideband mode the motion must be forced externally (by use 
of a grid corresponding to the desired sideband) before the Rayleigh number is 
allowed to cross to a supercritical value. 

The analysis to date has used a discrete multimodal description. It has dealt 
solely with questions of stability and not with the initial value problem in 
which all solutions are allowed to compete from some initial time on an equal 
basis. Segel (1966) did attempt to answer the question from this viewpoint, but 
did not allow for the relevant non-linear interactions. We wish to pose the 
problem in a somewhat different way, which we believe more closely describes 
the physical situation. Instead of beginning with a discrete number of modes, 
the number of which rapidly inflates due to non-linear coupling, we pose the 
problem as a statistical initial value problem. Given a supercritical Rayleigh 
number a t  some time t = 0 and an initial small random disturbance field, we 
seek to describe the time evolution of the statistical moments of the process. 
Instead of using the Boussinesq equations, we use a derivative of these equations 
obtained recently by Newell & Whitehead (1969).t In this derivation the basic 
idea is to treat the amplitude of the neutral solution given by the linear stability 
problem as a slowly varying function of both position and time. In  that way we 
generate a non-linear partial differential equation for this amplitude. This equa- 
tion has as special solutions the unimodal solutions discussed above, but also 
describes the time evolution of a spatially dependent initial profile whose Fourier 
synthesis would find energy continuously distributed among all the sideband 
modes. We make a further simplification to our model by restricting ourselves to 
the case of two dimensions. 

To be precise, we write our neutral solution for the zeroth-order vertical velocity 
component u(x ,  x ,  t )  of the flow field as 

where 

* refers to the complex conjugate. I n  order to solve the Boussinesq equations 
successively so that coo represents the first term of a uniformly (in space and time) 
valid asymptotic expansion for u in powers of ( (Ra-Ra, ) /Rac)~ ,  we find that 

t This derivation has also been obtained by Segel (1969). 

33-2 
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a certain solvability criterion must be met. In  non-dimensional and normalized 
form this criterion is 

__-__ a2w - - W-WZW", aw 
aT ax2 

For further details we refer the reader to the Newell & Whitehead paper. 
From (1.5) we form the hierarchy of equations for the statistical moments 

(equivalently the cumulants) whose evolution in time we wish to examine. We 
assume the field to be spatially homogeneous in X ,  which means that the moments 
depend only on the relative and not the absolute position of the spatial argu- 
ments. As is well known in non-linear stochastic processes, the time rate of 
change of a cumulant of a given order depends on cumulants of a higher order, 
and one is faced with the usual closure difficulty fundamental to non-linear 
random processes. Since there is no ap,riori reason why the statistical distribution 
should not require all of its moments to describe its evolution from a given initial 
state, one is left with an infinite set of equations to solve. The closure we succeed 
in obtaining depends on the smallness of the initial disturbance field. If we begin 
with the cumulants small we find that initially they grow exponentially in time; 
however, the crucial point is that even though all the cumulants grow exponen- 
tially there is a certain ordering in the initial rate of growth of the different cumu- 
lants. The rate of growth of the second-order cumulant is less than that of the 
square of the mean; the rate of growth of the third-order cumulant is less than 
the growth of the product of the mean and second-order cumulants, which in 
turn is less than the cube of the mean. Even though the inner (initial) expansion 
becomes non-uniform after a certain time, the size to which the cumulants have 
grown remains inversely proportional to their order. Thus, using the concept 
of matched asymptotic expansions, the hierarchy of equations for long time 
turn out to be non-linear but closed. Fortunately it transpires that the outer 
solution is uniformly valid for all time. If  e (Is] 4 1) is a measure of the ampli- 
tudes oftheinitial fieldthentherelevant orderingparameterisP(e) = [log 1/Isl]d. 
What happens is that the mean value grows from its initial amplitude of order c 
to a finite steady value of unity. The second-order cumulant grows from its 
initial order c2 to a size ,4 after a time lip2 and then decays with time to zero. 
Likewise the nth order cumulant grows to a size P*-l at  time 1/P2, and then decays 
to zero. 

The net result js that we are left with a field which is one of perfect order. The 
motion is no longer random but is made up of discrete rolls whose size corresponds 
to that of the most critical wavelength. Initially the spectrum contained energy 
in the total bandwidth of interest, but the sideband modes were not able to 
compete effectively with the mean in deriving the potential energy from the 
mean temperature profile. Essentially the reason is that the interaction of a 
given sideband mode with the mean is weaker than its interaction with the other 
sideband modes. This becomes clear in the closure equations of 0s 2 and 3. 

It is worth commenting on the necessity of using a matched asymptotic 
expansions approach in favour of a multiple time scale approach; the latter 
proved to be successful in obtaining a closure in interacting random, dispersive 
wave fields (Benney & Saffman 1966; Benney & Newell 1969). The essential 
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point to stress is that in the present problem, unlike the case of random waves, 
the non-linear terms are not always weak; in fact after a certain time they are as 
important as the linear terms. The reason the multiple time scale approach is 
inadequate lies in the fact that the dependent functions themselves undergo 
order of magnitude changes in time. An analogous situation exists with the slow 
flow around spheres and cylinders. Because the amplitude of the velocity 
changes from zero in the Stokes solution to the free stream velocity in the Oseen 
solution the method of inner and outer expansions is necessary. The multiple 
scale approach is only effective in dealing with situations where the fundamental 
solution has the correct order of magnitude. One cannot begin with a Stokes 
solution whose constants are slowly varying functions of position, and hope to 
produce the Oseen solution, as we know that in the far field the momentum 
advection term belongs in the zeroth-order balance. 

Of further interest is the fact that the solution to the statistical initial value 
problem transports the most heat through the layer. It has been suggested by 
Malkus (1954) that there exists some statistical stability criterion which selects 
among the class of solutions the solution which extremises some macroscopic 
quantity. Malkus further suggested a stronger hypothesis in order to obtain 
a simpler problem: namely, that the flow field, which ultimately occurs, not only 
has the maximum heat transport of all solutions of the Boussinesq equations, 
but may be close to the maximum heat transport of all flow fields restricted only 
to satisfy the boundary conditions, continuity and certain power integrals of 
the Boussinesq equations. Whether or not the Malkus hypothesis is true, the 
idea stimulated Howard (1963) to ask the following formal question. If we 
take a set of flow fields constrained only by boundary conditions, continuity, 
and certain power integrals, what is the maximum heat transport and corre- 
sponding solution over this set? The result is certainly an upper bound of the 
heat transport actually realized by the fluid and as such is useful when there is 
no other way to acquire information for turbulent convection flow. (Malkus & 
Howard were interested in large Rayleigh numbers. In the past year Busse 1969 
Bas extended much of Howard's work to other turbulent flow situations.) The 
difficulty with the Malkus-Howard approach is that one never knows how close 
the actual solution comes to the upper bound. It is of some interest, therefore, 
that we show ( 3  5) how the final steady solution obtained from the statistical 
initial value problem is the very same solution as the flow field that upper-bounds 
the heat transport, and is coilstrained not by (1.5), but only by the simplest power 
integral derived from (1.5). 

In  order to show consistancy with the discrete multimodal stability analysis, 
we verify in fj 4 that, if we take as initial conditions the finite amplitude discrete 
sideband mode plus some noise (instead of having only noise), then the criterion 
that the disorder decays is exactly the Eckhaus stability criterion (1,3). (The 
Schliiter et al. instabilities are of a three-dimensional character and so do not 
appear.) Thus the appearance of the single roll solution corresponding to the 
most critical mode depends in some sense on the relative disorder in the initial 
conditions. If there is such disorder that all parts of the finite bandwidth spectrum 
compete in some sense on an equal basis, then there seems to be a natural 
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statistical selection process which forgets about the initial data. If, on the other 
hand, the initial spectrum is weighted sufficiently in favour of a discrete side- 
band mode, then the solution depends solely on these initial conditions. 

2. Perturbation procedures 
As the reader is no doubt well aware, the study of stochastic processes often 

involves a great deal of notation and algebraic manipulation. Unfortunately, 
this situation becomes even more complicated when a given problem is attacked 
by perturbation methods. For this reason we wish to devote this section to a 
detailed discussion of a somewhat simplified version of the problem posed in (1.5) 
equivalent to taking W real. This will permit us to make clear the critical points 
in the analysis while minimizing the notational difficulties and algebraic manipu- 
lations. Subsequent sections will be concerned with the more general problem. 

To be specific we shall examine solutions u(x ,  t )  of the following quasilinear 
parabolic differential equation, 

involving only one space variable x, where - co < x < co, and the time t. As our 
interest lies in the solution of the statistical initial value problem we assume 
that u ( x ,  t )  is a real-valued stationary random function of x, whose initial mean 
value properties are known. The stipulation of spatial homogeneity is a common 
practice in statistical theories of turbulence. Our effort, then, will be directed 
toward determining the time evolution of the mean value properties of u(x, t ) .  

The particular mean value properties that we wish to study are the physical 
space correlations of u(x,  t ) .  As u is a stationary random function of position, 
these correlations depend only on the relative geometry. For example, the first- 
order correlation or mean is defined by 

(u(x, t ) )  = R(l)(t), ( 2 . 2 )  

where the angle brackets denote an ensemble average. The nth order correlations 
(n 2 2 )  are defined by the ensemble averages, 

(u(z ,  t )  u ( x  + r ,  t )  u (x  + r’, t ) .  . .u(x + dnp2), t ) } ,  (2.3) 

which are functions of the spatial separations r,  r’, and the time t. 
Allowing a non-zero mean implies that the correlations defined in equation (2.3) 
will have generalized functions as Fourier transforms. As is well known, this 
difficulty is avoided by introducing the nth order physical space cumulants. 
These oumulants have the property that they will tend to zero as the relative 
separations tend to infinity, and hence the cumulant transforms will be ordinary 
functions. Thus, for n = 2 ,  

for n = 3, 

R(3)(r, r‘ ,  t )  = (u(x ,  t )  u(x + r,  t )  u (x+ r’, t ) )  - (u(x ,  t )  u (x  + r ,  t ) )  ( u ( q  t ) )  

I t s ( ? ,  t )  = (u(x ,  t )  u(x  + r ,  t ) )  - ( ~ ( x ) ) ~ ,  (2.4) 

- (u (x ,  t )  u (x  + r’, t ) )  (u (x ,  t ) )  - ( u ( x  + r ,  t )  u (x  + r.’, t ) )  (u(x ,  t ) )  + 2(u(x,  t ) } 3 ,  (2.5) 
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and, in general, 

R(@(r, T ’ ,  . . . , r@--2), t )  = (u(z, t )  u(x  + r ,  t )  u(x + T’ ,  t ) .  . .u(x + t ) )  
- C 

a,& ... 
( ~ ( 2 ,  t ) .  . .U(X + da), t ) )  ( U ( X  + T@), t )  . . .U(X + ~( r ) ,  t ) ) .  . . , (2.6) 

where the summation contains all the necessary combinations of products of 
correlations, involving u(x,  t ) ,  u(x  + r,  t ) ,  . . . , u(x + T ( ~ - ~ ) ,  t), to ensure the proper 
behaviour of R(”) as the relative separations tend to infinity. 

The nth order Fourier space cumulants are defined by the equation, 

R(n)(r, T ’ ,  .. .) r(n-2), t )  = &‘“’(k,, kr, ... , k,(,-2), t )  

x exp ( ikzr+ikrr’+ ... +ik,(~-~)~(~-~)) d k ~ d k r . . . d k ~ ( ~ - * ) .  (2.7) 

The time evolution of the physical space cumulants is governed by an infinite 
set of coupled equations obtained by properly averaging (2.1). We shall derive 
the first two equations of this set and then indicate the form of the general 
expression. The first equation is obtained by directly averaging (2. l), which 
can be written as 

Utilizing the fact that the operations of averaging and differentiating may 
readily be shown to commute (see Batchelor 1953), (2.8) becomes 

Now we must introduce the expressions for the physical space cumulants given 
in (2.2)-(2.6). Because of the spatial homogeneity assumption, the second term 
on the left of (2.9) is zero, and we thus obtain 

3 
____ aR(l)(t) ~ ( l ) ( t )  = - ~ ( 3 ) ( 0 , 0 ,  t )  - 3~(2) (0 ,  t )  ~ ( l ) ( t )  - ~ ( y t ) .  (2.10) 

at 

Notice that this equation, which we shall interpret as the governing equation 
for the time evolution of contains the second- and third-order physical space 
cumulants. 

The second member of our set is obtained by first multiplying (2.1) by u(x’, t )  
and averaging. Thus, we have 

+(d, t )  a 4 x ,  T) t )  - ( u ( d ,  t )  qy) = (u(z’, t )  u(2, t ) )  - (zc(x’, t )  u3(x, t ) ) ,  

(2.11) 

where x and x’ are unrelated. Next we must express (2.1) in terms of x’, multiply 
by u(x,t) and average to obtain 
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Upon setting X'  = x + r  and adding (2.11) and (2.12) we have 

= - (u(x  + r ,  t )  u(x ,  t )  u(x ,  t )  u(x,  t ) )  - (u(x, t )  u(x +r ,  t )  u(x  + r ,  t )  u(x + r ,  t ) ) .  
(2.13) 

Combining the expression, 

(2.14) 

with (2.10) and (2.13) leads to the second member of our set: namely, 

aR(2)(r' ~- t ,  2 a2R(2)(r7 t ,  - 2B2) ( r ,  t )  = - cYp-p{J2(4)(0, 0, r ,  t )  + 3B3)(0,  T ,  t )  R(l)(t) 
at ar2 2 

+ 3R(z)(r, t )  R@)(O, t )  + 3A(2)(r, t )  R(l)(t)}, (2.15) 

where the symbol Ym,. . .r(m) is used to imply a cyclic summation over r ,  r', . . . . hm). 
Thus, the equation governing the time evolution of R(2) contains R(3) and R(4). 
By similar rnanipulations we can obtain the governing equation for the general 
nth order physical space cumulsnt. It will have the form (for n 2 Z ) ,  

... - - - Yr (R(n+2)(0, 0, r ,  . . ., dnP2), t )  + 3Bn+')(0, Y, Y', . . ., r(%-'), t )  R(l)(t) 
2 

+ 3R(?&)(r, r ' ,  .. ., ~ (n -~ ) ,  t )  R(l)(t) + 3R(n)(r, r ' ,  . .., r(n--2), t )  R(2)(0, t )  

+ 3R(n)(0,  r ' ,  . . . , 

+products of cumulants of order less than n}. 

t )  H2)( r ,  t )  + . . . + 3R(n)(r,  r', . . . , Y ( ~ - ~ ) ,  0, t )  B2)(r(n--2), t )  

(2.16) 

A few comments are in order regarding (2.16). The left-hand side is a linear 
parabolic operator in n- 1 space dimensions. The term nRcn) arises from our 
having combined n equations of the form, 

= (u(x , t )u(x+r, t )  ... u ( X + r ( n - 2 ) , t ) ) - ( u ( X , t ) U . ( X , t ) u ( X , t )  

x u(x + r ,  t ) .  . .u(x + r(n--2), t ) ) ,  

in order to construct an equation for aRcn)/at as was done above for aR@)/at. 
Finally, we note that the right-hand side of (2.16) involves R("+l) and R(72+2). 
It is this latter feature which makes the solution of the statistical initial value 
problem so difficult. An infinite system of equations must be considered 
for a simultaneous determination of all cumulants. (In order to close off, or 
circumvent, the infinite set of cumulant equations one would, in general, be 
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forced to resort to systematic, although mathematically unjustifiable, analytical 
approximations. ) 

Fortunately, in the special case when the cumulants are initially small, we are 
able to obtain an exact solution of the cumulant equations by perturbation 
methods. To be specific we shall consider the statistical initial value problem 
posed by (2.10) and (2.16) with the following initial conditions: 

R(l'(0) = e,  R@)(r, r', ..., T ( % - ~ ) ,  0) = ~ % ( ~ ) ( r ,  r', ..., T - ( ~ - ~ ) )  (n 3 2), (2.17) 

where e is a real constant, 0 < [el < 1. The functions h(lZ) are assumed to be 
independent of e,  and their Fourier transforms are defined by 

x exp (&lr+ihvr' + ... +ih,(,-ur("-2))dkz...dh~(n-2). (2.18) 

Our first task is the construction of what we shall term the inner asymptotic 
expansions for the cumulants. We expect that these expansions will be useful 
only for a limited time. However, as is common in singular perturbation problems, 
the behaviour of these inner expansions will suggest the appropriate manner of 
resealing the differential equations so that the solutions can be extended to 
later times. The leading term in the inner expansion for B"), n 3 1, will be 
determined by setting the right-hand side of (2.10) and (2.16) equal to zero. 
The higher order terms, in E ,  will then be obtained by successively iterating in 
(2.10) and (2.16) upon the lower order terms. It is clear from (2.10) and (2.16) 
and the initial conditions in (2.17) that the inner expansions will have the form, 

(2.19) 
m 

R(%)(r, r ' ,  . . ., r(%-2), t )  - en C. ~2fR; .~ ) ( r ,  r', . . ., ~ ( ~ - 2 1 ,  t )  (n > I), 
i = O  

where RT) is independent of e. Consistent with (2.17) we shall require that 

Rf)(O) = 1, Ri1)(O) = 0 for j 2 1, Rin)(r,r', ..., ~ (n -~ ) ,  0) 

- - h(fi)(r, r', .. ., r(n-z)), Rp)(r, r', ..., +--2), 0) = 0 for (n 3 2, j > 1) .  (2 .20)  

In  order better to analyze the behaviour of the inner expansions, it proves 
convenient to Fourier transform the equations for the physical space cumulants 
using (2.7). For notational convenience we shall define 

Q(l)(t) = R@)(t). (2.21) 

The equations for the Fourier space cumulants thus can be written: 

(2.22) 



+ . . . + 3Qf?2-1, Qj.?r;!. . .z(n-z)m dk,  s 
I +products of cumulants of order less than n 

where the following condensed notation has been adopted : 

and the implied limits on all integrations are from - co to + 00. Further .9zr.,.z(m) 
implies a cyclic summation over the wave numbers Ic,, kr, . . . , k,(,). 

Corresponding to the asymptotio expansions for the physical space cumulants 
given in (2.19), the Fourier space cumulants will have an inner expansion 

m 

QIR, ,l(n-z) N en I; E~'Q$$. , .l(n-z) (2.27) 
j = o  

where the j subscript denotes the perturbation ordering. The leading term in 
each expansion is obtained by equating the right-hand side of (2.22)-(2.25) to 
zero. Making use of the initial conditions given by (2.17) and (2.18) we easily 

Qf) = et, (2.28) 
find that 

(2.29) 
n 2, k l + k r + . . . + k l ( n - - l ) =  0. 

A steepest descent analysis on the corresponding cumulants in physical space 
shows that the fastest growth rate occurs in the k1 = El, = .., = k1cn-2) = 0 mode. 
The higher order perturbation terms are found by successively iterating in (2.22)- 
(2.25) upon the lower order terms. For our purposes it is sufficient to calculate 
only the expressions for Qin), n 2 1. This is accomplished by substituting &in) 
into theleft-hand side of (2.22)-(2.25) and by replacing each Q(P) by the previously 

1 Qb;",!. . ~ n - 2 )  = @?). ,z(=-z) exp (nt - gly...i(n-1)i), 
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computed QLp’ in the right-hand side of these same equations. Solving this set 
of equations subject to the condition that Qln) = 0 when t = 0, n 2 1, we obtain 

2 ’  1 exp (2 t  - 2 r , t )  - 1 ett  - 1 
dk,  + 3 H p  __ 

+ 3 H j 2 ’ / H g )  2 - 2rv1 
kz+kr  = 0, ( 2 . 3 1 )  

+products of cumulants of order less than n , 1 
k1+ kr + . . . + kl(n-1) = 0. (2 .32)  

Having determined the first two terms in the inner expansion for each Fourier 
space cumulant, we now can transform back to physical space. With the aid of 
(2.28)-(2.29) we have that 

1 ( 2 . 3 3 )  
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By a simple steepest descent analysis we can show that the behaviour of 
RI;") as t -+ + co is given by (assuming that each H(n) is non-zero at  the origin) 

for  J 
The l/t*(n-.2) decay rate is characteristic of  diffusion problems. As a result o f  it 
we have, for example, that 

This result will be o f  utmost importance in the ensuing analysis. 
Next we shall determine the long time behaviour of the RP) terms. First, let 

us examine .@I-' as given by (2.30). Again applying a simple steepest descent 
analysis it can be shown that the term involving is O(e"/t) and the one 
involving is O(e"/tta). The last term is clearly O(e3t). In  order of  magnitude 
form then, the inner expansion behaves like 

R( l ) ( t )  = 4 ( 1 +  O(e2ezt) + O(e2e2t/t&) + O(sze2tit) + .. .} (2.36) 

for t 9 1. Thus, the inner asymptotic expansion becomes non-uniform when 

e2e2t = O(1) or t = O(1/pz) with /3 = 1/(log l / [c[) i .  (2.37) 

For values o f t  in this range, the inner expansion suggests that 

R'l'(t) = O(1) .  (2.38) 

Transforming the expression for  QP, given in (2.32), back into physical space in 
order to determine the long time behaviour of R:") requires slightly more com- 
plicated steepest descent calculations. However, it turns out that the term in- 
volving H(nk2t and some of the other terms involving only cumulants of order 
less than n lead to the largest contributions. In  order of  magnitude form, the 
general inner expansion can be written as 

(2.39) 

Thus, the inner expansion for each physical space cumulant becomes disordered 
on the same time scale; namely, 

Further the inner expansion indicates that R(n) = 0(pn-l) for t = l/pz. It should 
be recalled that when t = 0, R(n) = O(en). Consequently, by the time the inner 
expansions become disordered, the cumulants have become, in an asymptotic 
sense, transcendentally large compared to their initial values. 

t = O(l/p"). 
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In  order to ascertain the behaviour of the cumulants for t 2 O(l/p2) we shall 
employ a matched asymptotic expansions approach; this technique for construct- 
ing a uniformly valid solution in stochastic problems was first used by Benney & 
Lange (1969). We rescale the cumulants based on the orders of magnitude 
suggested by the inner expansions; namely, R(") = O(pn-l) for t = O(l//32). We 

(2.40) 
define 

and the corresponding Fourier space cumulant, 

R(")(Y, T ' ,  ..., ~ ( n - ~ ) ,  t )  = /3"-1B(")(r, T ' ,  ..., ~ ( n - ~ ) ,  t )  (n 2 l), 

Q&y)..l(n-a) = pn-lQf?!.pt-z) (n 3 1). (2.41) 

Substituting this expression into (2.22)-(2.25), the rescaled equations become 

.S&~'dkrn+3PQj?'SQ~~~.. ,Z(n - ~ ~ ~ k r n + . . . + 3 p a i ~ - , ,  

x 

+ pz ~ j ~ t 2 ~ ~ n - 2 ) m p ~ - m - p )  d/c, ,)  (kl+kl *+...+ kL(n-i)= 0). 

of$, ,z(n-a), dk, + p[certain products of cumulants of order less than n] 

(2.45) 

The manner in which Pappears in this set of equations suggests that we attempt 
an outer expansion for each physical space and Fourier space cumulant of the 
form, 

f i(n)(r, r ' , . . . , r(n-2), t )  N 2 /P(E) B?)(T, T ' ,  , . . , r(n-2), t ) ,  

s 
s 

m 

(2.46) 
j = O  
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Substituting these expansions into (2.42)-(2.45), we find that the O(1) terms 
must satisfy 

(2.48) 

’Q&), . 7(71- 1)  2 

+flu,, ..1(n-’)Q$y...Zcn-a) - ~Q&~. . . z (n - z )  + 3n@;)$$i!...,(4 
at 

= certain products of the &f’) with p < n, ( E ,  + Ic, + . . . + kl(n-l) = 0). 
(2.51) 

The first equation in this set is non-linear, the others are linear. Their form 
requires us to solve them successively. This we can readily do. 

(2.52) 

(2.53) 

exp (“t--a,.,..,cn--l)t) ( 2  
2t 3n,2 [adl)+e ] 

{aoJr...z(n-z) +terms involving certain Q&. . .i(n-z) = 

of the c@) functions with p < n> (n 3 2 ) .  (2 .55)  

The functions ahn) must be determined by matching to the inner expansion. Before 
doing this we shall determine the expressions for and QP). From (2.42) and 
(2.47) we see that (&I) must satisfy 

which gives us upon integration 

The equation for 91’) is obtained from (2.43): 



Random convection 

or 

527 

Higher-order terms in the outer expansions for the cumulants &“(n) can be 
determined in a similar manner. The set of closure equations (2.48)-(2.51) for 
the leading terms in the outer expansions contains all the terms in the corre- 
sponding set for the inner expansions plus certain of the non-linear terms. It 
turns out that the outer solution is valid all the way back to  t = 0. The matching 
then is especially easy, as we can match the unknown constants in the outer 
solution directly to the initial conditions. The arbitrary functions in (2.52)-(2.61) 
are given by 

1 

Thus, we can write the outer expansions for the Fourier space cumulants as 
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(2.64) 

(n 2, kz+kr+ ...+ kiln-1) = 0). (2.65) 

Several comments are in order regarding (2.63)-(2.65). First, for e2e2t < 1, 
the terms involving 1 + e2(e2t - 1) can be expanded in binomial series. By this 
procedure, one can clearly recover the corresponding inner expansions. When 
e2e2t z 0(1), such binomial series expansions are no longer valid (or useful), 
which explains why the inner expansions become disordered on this time scale. 
The above expressions were constructed on the basis of an expansion in powers 
of P ( E )  = l/(logl/\el)k; but ,8 does not appear explicitly in (2.63)-(2.65). This 
seeming contradiction is removed when one examines the long time behaviour 
(for e2e2t 2 O(1)) of the time integrals in these equations. This we shall do below. 
Fortunately, it turns out that the outer expansions remain uniformly valid for 
all t -+ + 00. Thus the long term behaviour of the cumulants is governed by the 
leading terms in each of the outer expansions. For e2e2t > 1 we have that 

Q(l) N 1, (2.66) 

(2.67) 

which, in terms of the nth order correlations, implies that 

(U(Gt)) 1, (2.68) 

(u (x ,  t )u (x+r , t )  ... U(z+r("-2),t)) - 1 (n 2). (2.69) 

The interpretation of these results is that the long time behaviour of our system 
is one of perfect correlation. 

We shall conclude this section with an investigation of some of the integrals 
appearing in (2.63)-(2.65) in order to support our claim that for t > O(l/p2)), the 
appropriate expansions parameter for the outer expansions is P(e). First we 
shall examine the following term in (2.63): 

H g )  exp ( - 2~7, s + 2s) 
dkm as. 

- - m  [l +s2(e2S- 1)12 (2.70) 
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We shall show that for e2eZt > O( l), this expression is O(p) as it should be. As is well 
known H g )  must be a non-negative function of Em, and H@)(O) = maxH“)(k,). 
Further, we have required that it be an ordinary function such that 

HE) dk, < co. 

Thus, 

exp ( - 2k2,s + 2s) 
- a [ 1 + e2(eZs - 1)12 

~ - dk,ds. 
a Hz’exp ( - 2kLs + 2s) 

dk,ds < c ~ H ( ~ ) ( O )  
[l +e2(e2S- l ) j2  

(2.71) 

It can easily be shown that the orders of magnitude, with respect to e, of the two 
terms in (2.71) are the same. Therefore, we shall work with the second expression: 

(2.72) 
In this last integral set y = e2(eZs-- l), dy = 2 ~ 2 e ~ ~ d s .  It becomes 

As we have the desired parameter p multiplying the last integral, we need on11 7 

show that this integral is an O(1) quantity for e2e2t 2 O(1). This is not difficult, 
for the integrand can be bounded above and below by functions of y only. Foi r 
example, 

where the integrals of the two bounding functions clearly exist. Therefore, wc 3 

have the desired result. 
The final integral that we shall examine is one in (2.64) which arises from thc 3 

forcing term in (2.50): namely, 

34 

(2.75 ) 
F L M  40 
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As this integral involves k, we shall have to transform it back into physical 
space. For consistency, then, we must have that 

= 0 - for E2e2t 2 O(1). (2.76) 

The ljth is the usual diffusion effect. As before, we equivalently examine (on the 
basis Irl < t 4 )  

(:I 
exp {[k;, - Ic; - ( E ,  - k,)2] s2 -t [E;  - E L  - (k,  - k,)2] s1 

x dk,ds,dsldkl. (2.77) 

The k, and IC,, integrations can be performed without difficulty. This leaves us with 

. (2.78) 
e2(sl+s2) ds,  ds, 

(81+8J2]’ 

4sl(s2 + t )  

Before making a change of variables it is convenient to discuss two of the factors 
appearing in this integral. Because the limits of integration require 

0 < 8, < $1 6 t ,  

(2.79) 

Therefore, as these two terms clearly do not affect the order of magnitude of 
the integral, we shall set them both equal t o  unity. On this basis (2.78) becomes, 
after making the change of variables, 

y = e2(e2s1- I ) ,  z = e2(e2sz - 1), 

$11(eZ t -  dx 
dy jOT [l -10y‘:2)]4 (1  +y)2 (1  + z)2 

which upon integration with respect to x leaves us with 

(2.80) 

(2.81) 

We have the desired factor multiplying this integral and by the same argument 
employed in (2.73) the integral itself is an 0 ( 1 )  quantity for e2e2t O(1). Thus 
the proof is complete. The other integrals appearing in the outer expansions can 
be handled in a similar fashion. 
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This concludes the analytical treatment in the present section. It is worth 
commenting that the diffusive character of the model equation (2.1) is entirely 
responsible for our being able to close the set of cumulant equations. In other 
words, we need the p factors appearing in (2.42)-(2.45) in order to obtain an 
essentially uncoupled set of equations for the leading terms in the outer expan- 
sions. The significance of this situation is brought out quite clearly by the study 
of the statistical initial value problem for the following ordinary differential 

- = u ( 1 - u ) .  (2.82) 
du equation 

dt 

It turns out that, if one assumes that the initial values of the nth order moments 
((u(t))”) are small as in (2.1’7)) the rescaled equations for the outer expansions do 
not contain any small parameters, as do (2.42)-(2.45). Thus a perturbation 
approach to finding the long-time behaviour of the system is not, possible. We 
might add that, if one is given the initial probability distribution function for u, 
it is possible to compute the exact time evolution of the moments because the 
solution of the integrated equation (2.82) is related in a one-to-one manner to 
the prescribed initial value. 

3. Analysis of equation (1.5) 
Having outlined in much detail the asymptotic procedures and the correct 

scales (0 2), we now turn to the statistical initial value problem posed by (1.5). 

(3.1) 
We write 

W ( X ,  t )  = u(X, t )  +- i v ( X ,  t ) ,  u, v rea.1; 

and the real and imaginary part of (1.5) are 

The analysis is very similar to 8 2 save for the fact that the decay of some of the 
cumulants for long time is algebraic rather than exponential. Hence, we shall 
use a more schematic approach so that the reader may follow the essential ideas 
more closely. We define a more obvious notation: 

The angle brackets denote the moments and the round brackets denote the 
corresponding cumulants. By virtue of spatial homogeneity the mean values 

34-2 
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(u), (v) are functions only of time; the second-order cumulants (uu’), (uv‘), (u‘v) 
and (vv’) are functions of the spatial separation T = X‘ - X  and time t ,  and have 
the necessary behaviour at  large r to permit ordinary Fourier transforms. The 
prime on the dependent variable denotes its value at X’, whereas the unprimed 
functions take their values at the position X .  Writing the hierarchy of equations 
for these cumulants, we obtain 

d(u) /d t  = (u) - [3(u2) (u) + (u)3 + (v2) (u) + 2(uv) (v) + (u)(v)2] + . . ., 
d(v ) /d t  = (v) - [3(v2) (v) + ( 4 3  + (u2) (v) + 2(uv) (u) + (v) (u)2] + . . ., 

(3.4) 

(3.5) 

~ ( u u ’ )  = - ~ ( u u ’ )  [(u2) + ( u ) ~ ]  - ~ ( u u ’ )  [ (v2)  + ( v ) ~ ]  

-~ [ (u ‘ v )+ (uv ‘ ) ]  [(uv)+(zc)(o)]+ ..., (3.6) 

9(uv’)  = - 4(uv’) [(d) + (u)Z+ (v2) + (v)2] 

9 ( u ’ v )  = - 4(u’v) [(US) + (up+ (?IZ) + 
2 ( v v ’ )  = - S(vv’) [(v2) + (v)2] - 2(vv’) [(u2) + (u)2] 

-2[(uu‘)+(vv‘)][(uv)+(u) (?I)]+ ..., (3.7) 

(3.8) 

- 2[(u’v) + (uv’)] [(uv) + (u) (v)] + ... ) (3.9) 

- Z[(uu’) + (vv’)] [(uv) + (u) (v)] + . . a ,  

where 9 is the operator (a/at)  - 2(a2/ar2) - 2 .  
We have not written down the terms arising from cumulants of order higher 

than two, since these play no major role in the final outcome (as in ?J 2). The initial 
conditions are 

(3.10) 

The first approximation to the inner expansion can be found by neglecting all 
the non-linear terms. 

The higher terms of the expansion are found by successively iterating the 
lower order solutions. From $ 2  we would expect that the uniformity of this 
expansion fails after a certain time. As typical examples of the inner expansion 
we choose (u) and (uu’) and write their long-time behaviour in order of magnitude 
form. By ‘long-time’ we mean times large compared with unity. 

(u), (v) = O(E), (uu’), (uv’), (u’v), (vv’) = O(e2). 

(u) - eet[O( 1)  + O(s2eZt) + O(e2e2E/& + . . .], (3.11) 

e2e2* 
(uu’) - ~ [ O ( l ) + o ( ~ ~ e ~ ~ ) +  ...I. 

4 
(3.12) 

The l/z/t behaviour comes from the usual steepest descents analysis and exhibits 
that the fastest spectral growth is in the K = 0 mode. The above expansions 
are uniformly valid for times in the range 1 < t < t,, where t ,  is defined by 

e2e2t1 = 1, t, = lip2, where p = (log l/lel)t. (3.13) 

For times comparable to t ,  the uniformity of these expansions fails. However, 
we again note that the magnitudes to which the cumulants (a), (uu‘), (uu’u’‘), 
etc. have grown are 1,p,p2, ..., and thus still form an asymptotically ordered 
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sequence inversely proportional to their order. That is the crucial point in the 
success of this analysis. We rescale as before, 

N N 

(u) = (u), (v) = (v), 

(3.14) 
N N 

(uu’) = P(uu’), (uv‘) = P(uvl), (ulv) = P(u’v), 

(vvl) = P(vv‘), .... 
N 

The equations for the means now become 
N 

N N  N N  N N  do = G) - &)3- (u) ( v ) ~ -  3P(u2) (u) -P(w2) (u) - 2p(u”v) 6 + O(PB), (3.15) 
at 

N N  N N  dG) - N - - 
__ = (v) - (v )3-  (u)’ ( v )  - 3p(v2) ( v )  --P(u2) (v) - 2p(u“v) 6) + O(P2). (3.16) 
at 

It is convenient to add unity times (3.15) to i ( =  4- 1) times (3.16), and get 
N N  

(u) + i (v )  = pe@ = p cos 8 + i p  sin 8. (3.17) 

Equating real and imaginary parts, we obtain 

dp/dt = p ( 1  -p2)-/3p(Xcos8+ YsinO)+O(P2), 

d8/dt = - p( Y cos 8 - X sin 8) + O(P2), 

X = 3(u2) cos 8 + (v2) cos 8+ 2 ( G )  sin 8, 

Y = 3(v2) sin e + (u2) sin 8 + 2 ( G )  GOS 8. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

N N 

where 
N N 

The zeroth-order solution is 

(3.22) 

8, = B, B a constant. (3.23) 

As in 8 2, the asymptotic expansions are uniformly valid for all time, and so 
we can find A and B by matching directly to the initial conditions. There is no 
loss of generality in taking the phase B to be zero, as this just entails a constant 
translation of the initial pattern in space. Yrom the initial condition, A = O(e2). 
The equations determining the zeroth-order second-order cumulants are 

The solutions of 

N 

(9 + 6&) (uu’), = 0, 
N 

(9 + 4p3 (uv’), = 0, 

(9 + 4p3  (u’v), = 0, 
N 

(9 + 2p3 (z)o = 0. 

(3.26)-( 3.27) are 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 
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(3.30) 

(3.31) 

where U(IIT,O), P(K,O), Q(K,O) and V(K,O) are the Fourier transforms of 

(uz), (z), (u;) and (2) at t = 0 and are of order E2/Ip.  We remark that from 
spatial homogeneity (uv') and (u'v) are related, (u(x) v(z + r ) )  = (u(z - r )  v(x)), 
and so only P or Q can be initially prescribed. 

At  this stage a new feature appears, which was not part of the analysis in 9 2 .  
A long-time analysis of (3.31) shows that the decay of the second-order cumulant 

(vv') is not exponential but only algebraic: 
N 

(3.32) 

N 

The behaviour of (vv') is one of initial growth from order e 2 / p  to order 1, where it 

reaches a maximum from which it decays algebraically. The cumulants (uu'), 
(uv'), (u?) have a similar early behaviour but decay exponentially. The reason 
for this difference is that by our selection of 8, = 0 we essentially have all the 
power in the (u) mode. Now it is known from discrete analysis that single rolls, 
while extremely stable to disturbances in phase, are only marginally stable to 
rolls n/2 out of phase. One can see this by testing the stability of the solution 
u = 1 ,  v = 0 is the pair of equations, 

N 

N 

Thus, because of the much weakened interaction of (vv') with the mean as 
compared with that of (uu') with the mean ( u ) ~  (compare the terms in (3.24) and 
(3.27)), the order is achieved much less rapidly than $ 2 suggests. 

This phenomenon manifests itself again if we look at the first perturbation 
to the energy (or heat, flux) p, 

The ratio ,8pl/po exhibits two behaviours. As discussed in $2,  the first term of 
this ratio corresponding to the first term on the right-hand side of (3.33) never 
exceeds O(p)  and decays exponentially in time. The ratio of p times the second 
term in (3.33) to po is 

which never exceeds O(p),  but it decays algebraically (similar to (vv')) for 
long time. 
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An additional feature of interest is the production of a constant phase change 
in the mean. Using (3.19) and (3.29), we compute the phase (the initial phase was 
chosen to be zero): 

(3.34) 

which tends to a constant of order /3 as t-too. Thus the only way in which the 
final order remembers the initial disorder is in a constant phase jump which 
depends on the initial cross correlation. This result is not inconsistent with the 
fact that a single mode grows without change of phase, for in the case of a single 
mode this cumulant would be zero. 

We believe that the phase jump is related to an horizontal advection of tem- 
perature due to a definite correlation of the initial fields. The whole system moves 
to the right or left depending on the sign of this initial coupling. Certainly this is 
one measurable which could serve as a check on the theory presented, but it 
would be difficult actually to measure it, because that would require rather 
detailed initial information. 

To sum up: if the initial disturbance field is small, random and has energy 
spread in the local neighbourhood of the critical wave-number Ic,, then the field 
becomes ordered by selecting the single roll motion corresponding to the wave- 
number Ic,. The initial power spectrum has the heat flux, 

(uZ + wZ) = ( u ) ~  + ( v ) ~  + U(K,  0) dK + V ( K ,  0) dK, s s 
which shows that initially the whole spectrum in the neighbourhood of Ic, is 
carrying heat and drawing energy from the unstable conduction profile. However, 
the non-linear couplings are such that even though the second-order cumulants 
(a measure of the energy in the band) can receive potential energy, their growth 
is inhibited by coupling with a faster growing mean. After a time t = 1/p2 the 
mean extracts more energy from the band than is being put in from the con- 
duction profile, and eventually leads to decay of the higher order cumulants. 

The final state is one in which all the heat is transported across the layer by 
the mean, which in this description corresponds to the motion with the critical 
scale Ic,. In  $ 5  we will show that this solution is also the optimal one in the 
Howard sense. 

4. Effect of relative order in the initial conditions 
Before we continue to the upper bound question, we wish to test the sensitivity 

of the approach of centring the fundamental solution about the most critical 
wave-number. If we make the substitution 

W ( X ,  T )  = W,(X, T )  eiLX (4.1) 

in (1.5), we obtain the equation, 
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which is the solvability condition (in non-dimensional, normalized form) if we 
centre the neutral solution about (k, + L, 0). Again making the spatial homo- 
geneity assumption, and taking the average of (4.2), we obtain (again for con- 
venience we use t for T) 

d 
- (W,) = (1 - L2) (W,) - ( WL)z ( W z )  - higher order cumulants. 
at (4.3) 

One might, imagine that the arguments we use in 0 3 are equally applicable for 
this case from which one concludes that the mean is driven to a constant, the 
second-order cumulants decay and the heat flux is 1 - L2. This would correspond 
to all the motion in sideband mode L. One could then conclude that the spatial 
homogeneity assumption (centred around the critical wave-number) was itself 
the selection mechanism. However, if we interpret the averaging process as 
spatial averaging this cannot be the case, and we devote the following paragraphs 
to  the resolution of this apparent difficulty. Note that the results would not 
agree with the previous solution, because, if the W, field is driven to an ordered 
field (W,) = (1 - L2)B, then the mean (average over X )  of the W field is zero. 

The ensuing analysis exhibits the incredible delicacy by which we achieve 
the closure of the statistical initial value problem. I n  addition, we will be enabled 
to answer the question as to the degree of disorder required for the solution to 
go through. It will turn out that if, instead of stipulating an initial field which is 
small, random and having the spectral power equally spread in the neighbourhood 
of k,, we ask that the initial field consists of the finite amplitude steady solution 
corresponding to the discrete sideband mode L plus some noise, then the condition 
that the noise decays is precisely the Eckhaus stability criterion. 

Accordingly we form the hierarchy of equations for the correlation of uL and 
wL, the real and imaginary parts of W,. 

5%) = (1 -A2)  (u,) - [3(&) (u,) + (ad3 + (UL)  (WL) + 2(ULW,) (9,) + (a,) (?JL)21 

d(2)L)  _ _ ~  = (1 - L2) (v,) - [ 3 ( 4  (%) + (wL)3 + (&I ( ? J U T , )  + 2(u,w,) (UL) + (UL)O1 (ud1 
+ ..., (4.4) 

f..., (4.5) 

dt 

dt 

~ ( % U ; ; )  + 2 a W )  [(ULV;;) - ( 4 % ) 1  = - 6(u,u;;) [(&) + (uL)21 

- 2(ULU;;) [(& + ( v d 2 I  - W;;%) + ( W L ) I [ ( % % )  + 

a w L 4 )  + 2L(a/w [(.,.;;I - (.;,%)I = - 6(%W;;) rc.3 + ( V J 2 I  

(%)I 
- (u:t&) - (u,u;;w~) - (u,uz) - (u,uiw;;”) -products {(u:) (u,), . . .), (4.6) 

- 2(v,v;;) [(&) + ( d 2 1  - 2[(u;;v,) + (%4)1r(uL%) f (UL)  (%)I 

- 2r(v,u;;) + (~,4,)1 r(uL~,) + (uL) (vr,)l 

- ( W ~ W L )  - (w,wl;ui) - (vLw;;”uL) - (v,vLu;;”) -products {(a) (w,), ...), (4.7) 

Z(u,&) - 2 L ( W )  [(ULZC;;) + (%1J;;)1 = - 4(%li;;) [(& + (d2 + (&) + ( V d 2 1  

- ( u ~ ~ ~ ) - ( u , w ~ w ~ ) - ( ( ~ ~ w ~ u ~ ) - ( u , . ~ ; ; 3 ) - p r o d u c t s  {(&)(v,), ...>, (4.8) 

-Lu(4Y,) + 2e(a/w r(%zc;;) 4- (w&)1 = - 4(u;;vd [(G) + ( U d 2 +  (4,) + (%)21 
- 2[(u,u;;) + (flLWL)I [ (UL%) + ( U L )  (%)I 
-(u?w,)- (u~U~w,)-(u~~,u;;)-((ZL;;ZI~)-pproducts {(ui) (w,), ...}, (4.9) 
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where the same notation defined in $ 3  has been used, except that now 

a a2 

at a@ 2 = --2--2(1-L2). 

If, as before, the initial values are given, 

(UL), (WL) = O ( 4 ,  (%,u;;), (u,vi), ( U i % ) ,  (v,vL) = 0 ( E 2 ) ,  

then the initial balance is purely a linear one. Prom (4.6) and (4.7) we see that 
the initial growth of the mean is 

(uL), (v,) N ee(l--L2)t. (4.10) 

By introducing the natural combinations (u,u;) + (uLv;), (uLui) - ( vLv i ) ,  
(uLvi)  - ( u i v L )  and (u,vi) + (uLvL) suggested by the linear parts of (4.6)-(4.9) 

(4.11) we obtain 

(4.12) 

= Y [ ( U L U i )  - (vL-v;;)I = 0, 

m u L v ; )  + (u;vL)I = 0, 

=Y[{(..L~L) + (v,vi>> -iuuLvL) - ( 4 v L ) ) I  

- 4iL(a /ar)  [{(u,u~) + (w,v~)}- ~{(u,w;) - (u~w,)}] = 0. (4.13) 

If we define U ( K ,  0 ) ,  V ( K ,  0) ,  P(K,  0 )  and &(K, 0 )  to be the initial Fourier trans- 
forms of (uLui) + (v,v;), (uLu;) - (v,vL), (uLvL) - (uLvL) and (uL&) + (uiw,) 
respectively, then the solutions of (4.1 1)-(4.13) and resultant asymptotic 
behaviour are 1 V ( K ,  0) eiKre(2-2K2-2Le)tdK N V(0,O) e2(1-L2)t , (4.14) 

(u,v;~;;) + ( u i v L )  =: [&(x, O)ei=re(2-2KZ-2L2)tdK N &(O,  0) e2(1-L2)t (%) , (4.15) 

( U ( K ,  0) - iP(K,  0)) ei=re2t-2(K+QztdK 

N ( U (  -L,0)--iP(-L,0))e-iLre2t(~)i. (4.16) 

Thus the fastest growing second-order cumulants are associated with the mode 
K = - L or the most critical wave-number lcc. The essential point is that for 
L =t= 0 the growth of the second-order correlation is faster than the growth of the 
square of the mean, for after a long time 

(UL)2 = O(@ &l-mt ), 

(u.Lu;) - (vLvi )  = ("ti 
7 l *  

{(uLu;) + ( v L v ~ ) ) - - i { ( u L ~ ~ )  - (u;vL)} = s 

(4.17) 

(4.18) 

Thus, whereas for L = 0 the size of the second-order cumulant after the time t ,  
at which the inner expansion fails is less than the square of the mean, this is 
no longer so when L is any finite number as 
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Thus the next balance of the equation hierarchy must include the higher-order 
cumulants ahead of the products of lower-order ones, and we no longer obtain 
the immediate and straightforward closure of 0 3 (e.g. a t  times t ,  in the equation 
for the mean the triple cumulant term which we have neglected to write down 
is the dominant term). It is clear from (4.15) and (4.16) that the energy all goes 
back to the most critical mode (the higher cumulants behave similarly), and 
that this is the natural mode around which to centre the analysis. Though we 
cannot formally deduce the final state, it is clear, and we may verify that the 
ordered solution corresponding to W = 1 satisfies the equation hierarchy (4.6)- 
(4.9). W = 1 implies u, = cos LX, vL = -sinLX which implies 

( U L )  = ( V L )  = 0, (4.19) 

(4.20) 

(4.21) 

Note that this is precisely the structure evolving from the initial growth given 
by (4.14)-( 4.16). 

(u,uL) + (w,~;) = cos Lr, 

( u L v i )  - (uiw,) = -sin Lr, 

(u,ui) - (ziLvi) = 0. 

( u L v i )  + (uiv,) = 0. 

(u:) = 0,  as are all averages of triple products: 

(u;,uL) = (uLui) 3 - 3(uLui) (u;) = - 8 cos Lr, 
(uzu,) = (wLvL) 3 t  = (wLvL) '3 = -#cosLr, 

( u L u ~ v ~ )  = (uiu,vz) = (w,w~u~) = (v,viuL) = - A cosLr, 

(a%&) = (u,v;) = - (u; vL) = - (u,v?) = gsinLr, 

(u,$vi) = (uL vr,uL) = - (u,vr, vL) = - (uLwI,uL) = 4 sin Lr. (4.22) 

It is readily seen that substitution of the above in (4.4)-(4.9) satisfies these 
equations. 

In order to examine the situation when the initial disturbance field is one of 
a discrete sideband modal solution immersed in a small random noise field, we 
test the stability of the solution, (uL) = (1 - L2)*, (w,) = 0, all other cumulants 
zero. The equations for the perturbed averages themselves do yield stability 
as would be expected, since this is similar to disturbing the solution with fields 
structurally the same as the disturbance. It is the stability (or instability) of 
the second-order cumulants that is analogous to perturbations of different 
structures. The linearized equations for the perturbed second-order cumulants 
are 

I? r?  

I 2  I 1 12 2 1  

(4.23) I .=Y(u,ui) + 2L(a/ar) [(u,.;) - ( u ~ o L ) ]  + 4(1- L') (u,~;) = 0, 

=.9(vLwi) + 2L(a/ar) [ (uLv i )  - (uLwL)] = 0, 

= q u L v i )  - 2 ~ ( a / a q  [(u,u;;) + (21L2);;)3 +2(1  - ~ 2 )  (u,.;;) = 0, 

=.9(u;v,) + 2L(a/ar) [(u,u;;) + (v,vi)] + 2(1 -L2) (u;;v,) = 0, 

where 

The Fourier transforms of these quantities have solutions 

eAi(K,L)t (i = 1, 2,3 ,4) .  
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For stability we must guarantee that 

max A,(K,L) < 0; 
K 

l C i G 4  

as a steepest descents analysis on the physical space cumulants has its largest 
contribution from those wave-numbers K which maximize A(K, L). The root 
that can have positive values is 

A ( K ,  L )  = - 2K2 - 2 + 2 L2 + 2 ( ( 1 - L2)2 + 4K2L2)6, (4.24) 

for which the maximum is attained at  

K 2  = (3L2- 1) (L2 + 1)/4L2, (4.25) 

whence A(K, L)  = (3L2- 1)2/4L2. (4.26) 

Thus, in order to attain a positive maximum, it is necessary that L2 > 4. Other- 
wise A,(K, L)  < 0, all i and K and we have stability. The final part of this 
analysis is precisely the analysis one goes through when dealing with discrete 
perturbations (Newel1 & Whitehead 1969). 

It is concluded therefore that, if the initial disturbance field is random and 
small, and does not weight the initial spectrum in favour of a particular wave- 
number, a selection mechanism is available which chooses the ordered solution 
(which happens in this case to maximize the heat flux), and which solution 
(except for a slight phase shift) is otherwise independent from its initial conditions. 
If, on the other hand, the initial field is partially ordered, then the final field may 
be one which remembers that that order depends on some stability criterion. 
We have only looked at the extreme cases, but it is reasonable to suggest that 
there is a critical amplitude balance between the initial magnitude of the ordered 
field to that of the noise field which determines whether the final solution is 
obtained by natural selection or by the initial order, It is of interest to remark 
that Newell & Whitehead showed that the stability level decreases continuously 
as the initial amplitude of the ordered field decreases. 

5. Optimal solution 
We relate the solution obtained from the statistical initial value problem in 

5 3 to the optimal steady solution constrained only by a power integral of the 
equations 

au 8% 
= u(l-u2-v2), 

at ax2 

av a2v _-__ - - v(1 -UZ-V2) .  
at ax2 

Multiply (5.1) by u and (5.2) by v, average over X, and obtain 

l a  
- 2 - at (u2 +v2) +( ( ax q2> = (u2 + v2) - ((u2 + ?I")"). (5.3) 
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The average ( ) is defined by 
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The second term on the left-hand side in (5.3) results from partial integration. 
If we look for solutions where averages are time independent, and write 

((u2 + v2)2) = ( u 2  + v2)2+ ({(ZG2+ v2) - (u2 + v2)}2>, 

(u2 + v2)2 - (u2 + V Z )  + pu"( u, v) = 0, 

(5.5) 

(5.6) we obtain, 

We wish to choose the field (u, v), which optimizes the heat flux (u2 + v2), and 
which is constrained by (5.6). Solving (5.6) and taking the larger root, we obtain 

(uZ+vZ) = ++&(1-4p2)2-. 

Clearly (a2 + v2) is maximal when p2 = 0, which implies 

(u2+v2) = 1, u2+v2 = I, u,vconstant. ( 5 4  

This is precisely the ordered solution obtained in 5 3. 

6. Discussion 
The model equation we have used is a prototype for stability problems, and is 

useful when the linearized problem correctly predicts the initial instability. 
A slight modification is required when the instability sets in as a growing oscilla- 
tion: in this case the relevant equation contains, in addition to diffusion terms, 
dispersion and group velocity terms. These equations arise as a natural conse- 
quence in obtaining a uniform approximation to some generic equation, and 
are accessible to a statistical initial value approach because they contain a priori 
the fundamental structure of the final solution. 

To be specific we will comment on the applicability of (1.5) to the convection 
problem. The choice of a W ( X ,  T )  that satisfies (1.5) ensures that wo is a uniform 
first approximation to the Boussinesq equations for slightly supercritical Ray- 
leigh numbers providing (i) the spectral content of the initial data lies close 
to the most critical mode k, = nj2 and (ii) the motion is two-dimensional. 
Moreover, the former is not a serious restriction as it is clear that the energy not 
in the immediate neighbourhood of kc (and also in the higher harmonics of the 
vertical eigenfunction structure, e.g. sin nm) decays on the thermal diffusion 
time scale, to. Thus for initial times on the time scale measured in units 

to/((Ra - R%)/Rae), 
(i) is closely satisfied. The three-dimensionality in the problem chooses the 
cellular pattern rather than the scale. Essentially there are two decision pro- 
cesses: the first is the choice of the scale of the motion, in which energy, 
initially distributed in an annular neighbourhood of the critical circle 
k: = in. tends to concentrate on this circle; the second is the choice of the 
cellular pattern (e.g. single rolls, hexagons (superposition of three rolls)), which 
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choice is dictated by the behaviour of external parameters. The former process 
is essentially what we have described in this paper; in it the final solution seeks 
to minimize the effect of the di8usion term. The latter process occurs as a result 
of the non-linear coupling coeficients between different modes lying on the 
critical circle. For example, in the case where the mean temperature profile is 
a slowly varying function of time, the vertical eigenfunction structure of the 
neutral solution has a marked asymmetry. As a consequence, the solvability 
condition (analogous to (1.5)) contains quadratic terms as the vertical eigen- 
function can reproduce itself by a quadratic non-linear interaction. As a further 
consequence, the motion chooses the hexagonal solution as the preferred pattern, 
presumably because the hexagonal structure can reflect the asymmetry (which 
a single roll cannot). As a further example, in the case when the parameters are 
strict constants, the preferred pattern is two-dimensional, that of single rolls. 
Thus, if the energy is initially distributed continuously along the circle Ic2 = in, 
we would expect the energy eventually to cluster at  discrete points. 

As yet, we have not been able to deal with this question from the statistical 
initial value approach. The reason is that we do not have a convenient description 
which allows the energy to be continuously distributed on the circle k2 = inz. We 
saw in $4 how important it is to have the correct fundamental solution in the 
initial description in order to obtain a straightforward closure. For example, if 
we were to treat the original Boussinesq equations from the statistical initial 
value approach, then the moments (spatial averages) would have t o  reflect the 
horizontal structure of the vertical and horizontal velocities, which are cos kcx 
and sinkcx respectively. As demonstrated by a similar difficulty in $4, this 
results in all the even moments being non-zero and closure is not as readily 
obtained. 

We also wish to comment further on the fact that the solution to the statistical 
initial value problem based on (1.5) tends in the limit of long time to the upper 
bound solution in the Howard sense. It would be unwise to give too much credence 
to the notion that the average flow field is chosen on the basis of maximal heat 
flux as the functional (u2+v2) in our description corresponds to many macro- 
scopic properties of the flow (e.g. dissipation). However, whab we have shown is 
that the upper bound can be reached provided the initial state involves sufficient 
disorder. These results seem to suggest a means of assessing how close the actual 
flow fields come to the upper bound fields in more general flow problems. This 
perhaps could be accomplished by first deducing a set of equations analogous 
to (1.5), which are equivalent in some asymptotic sense to the Navier-Stokes 
equations as well as having similar upper bound flow fields, but which are more 
accessible to a statistical initial value approach. A possible procedure might be 
to introduce time dependence into the time independent Euler equations ob- 
tained from the upper bound analysis. Certainly, as the remarks in $ 4 brought 
out, the choice of the correct description of the solution played a major role, not 
in the final result, but in our ability to obtain an immediate closure of the non- 
linear stochastic problem. 

As pointed out earlier, (1.5) was derived on the basis of a slightly supercritical 
Rayleigh number. Because of technical difficulties most of the past efforts to 
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analyze the stability problem have been restricted to this parameter range. 
However, experimentally it is found that for a much larger range of Rayleigh 
number the resultant effect of a small random disturbance, natural to the fluid, 
is the creation of a steady pattern of rolls. This situation suggests that the statisti- 
cal initial value approach would be advantageous for Chat more general problem. 
Preliminary investigations indicate that this is the case and, indeed, the analysis 
does not appear to offer any insurmountable difficulties. In the context of the 
previous paragraph it would be of interest to find a theoretical explanation for 
the experimentally observed phenomenon of a slight increase in the length scale 
of the preferred roll as the Rayleigh number is increased (Krishnamurti, private 
communication). 

Finally, we wish to raise a point related directly to our own work. We have 
been able to show that in most circumstances the preferred scale of the final 
solution is that of critical; however sufficient order (or lack of smoothness in the 
initial spectrum) can produce the sideband fields eiLx. Moreover, the reason 
the sideband field can exist is a consequence of the preservation of its structure 
by the non-linear term in (1.5). (E.g. (eiLX)2(eiLX)*+eiLX.) But if the initial 
conditions contain two finite amplitude sideband modes eiLlx, e i L z x ,  then all 
the spatial harmonics will be generated in time. We ask: does the initial order 
lead to a state of sufficient disorder, so that the statistical selection process has 
an opportunity to work and reproduce the single roll? 

This work was supported in part by N.S.F. Grant G.A./0167, and by 
O.N.R. 233(76). 
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